
CMSC 341
Lecture 2

Dynamic Memory and Pointers

Park—Sects. 02 & 03

Based on earlier course slides at UMBC

Today’s Topics

Stack vs Heap

Allocating and freeing memory

new and delete

Memory Leaks

Valgrind

Pointers

Dynamic Memory and Classes

Program Memory

The memory a program uses is typically divided into
four different areas:

1. The .text section, where the executable code sits in
memory.

2. The .data/.bss area, where global variables are
stored.

3. The stack, where parameters and local variables are
allocated from.

4. The heap, where dynamically allocated variables are
allocated from.

From: http://www.learncpp.com/cpp-tutorial/79-the-stack-and-the-heap/

Stack vs Heap

Specific regions of memory

Both are used to store variables

Each behaves differently

Each requires different variable declarations

Stack

Memory automatically allocated by program

Local variables

Function calls

Restricted in size

Relatively small

Heap

Memory allocated at run-time

NOT managed by the program

Managed by the programmer (you)

Must use pointers to access heap memory

Variables on the heap can be resized

Heap is much larger than the stack

Access slower than the stack

Declaring Stack and Heap Variables

• Stack variable declaration

What you’ve been doing all along

int counter;

double scores[10];

• Heap variable declaration

Must use a pointer

int *values = new int[numVals];

(a technical point: the new array is in the heap,
but the pointer values is actually still a stack
variable)

Allocating and Freeing Memory

new and delete

Used to dynamically allocate and free
memory on the heap

new must be assigned to a pointer variable

int *calendar = new int[12];

SomeClass *newItem = new SomeClass;

delete releases memory previously allocated with
new

can only be used on pointer variables

delete newItem;

delete[] calendar;

Good Programming Practices

• C++ does not have garbage collection

• After memory has been freed, set the
pointer equal to NULL

• Must be done after delete is called

• Why do this?

Memory Leaks

Occur when data is allocated, but not freed

Calling new over and over, but never delete

Not freeing new memory before exiting a function

Access to the previous memory is lost

The location of that memory was overwritten

Eventually the program runs out of memory,
and the program will crash

Memory Leak Example

int *arr, var = 1000;

for (int i = 0; i < var; i++) {

arr = new int[100000000]);

}

arr

Heap

?

Memory Leak Example

int *arr, var = 1000;

for (int i = 0; i < var; i++) {

arr = new int[100000000]);

}

arr

Heap

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

Memory Leak Example

int *arr, var = 1000;

for (int i = 0; i < var; i++) {

arr = new int[100000000]);

}

arr

Heap

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

arr = new int[100000000]

Valgrind

Assists with dynamic memory management

Memory allocated using new

And therefore on the heap

Must compile with the -g flag (for debugging)

Detects memory leaks and write errors

Running valgrind significantly slows program down

valgrind --leak-check=yes proj1 arg

program to run on

Example valgrind Run – Code

#include <stdlib.h>

void f(void)

{

int* x = malloc(10 * sizeof(int));

x[10] = 0; // problem 1: heap block overrun

} // problem 2: memory leak--x not freed

int main(void)

{

f();

return 0;

}

Source: http://valgrind.org/docs/manual/quick-start.html/

Please note:

This is C code, not C++.

Example valgrind Run–Results 1

Describes problem 1 (heap block overrun)

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

==19182== by 0x80483AB: main (example.c:11)

==19182== Address 0x1BA45050 is 0 bytes after a block

of size 40 alloc'd

==19182== at 0x1B8FF5CD: malloc

(vg_replace_malloc.c:130)

==19182== by 0x8048385: f (example.c:5)

==19182== by 0x80483AB: main (example.c:11)

Source: http://valgrind.org/docs/manual/quick-start.html/

Example valgrind Run–Results 1

Describes problem 1 (heap block overrun)

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

==19182== by 0x80483AB: main (example.c:11)

==19182== Address 0x1BA45050 is 0 bytes after a block

of size 40 alloc'd

==19182== at 0x1B8FF5CD: malloc

(vg_replace_malloc.c:130)

==19182== by 0x8048385: f (example.c:5)

==19182== by 0x80483AB: main (example.c:11)

Source: http://valgrind.org/docs/manual/quick-start.html/

Stack trace

(read from bottom up)

First line: type of error

Example valgrind Run–Results 2

Describes problem 2 (memory leak)

==19182== 40 bytes in 1 blocks are definitely lost in

loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc

==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11)

Source: http://valgrind.org/docs/manual/quick-start.html/

Example valgrind Run–Results 2

Describes problem 2 (memory leak)

==19182== 40 bytes in 1 blocks are definitely lost in

loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc

==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11)

Source: http://valgrind.org/docs/manual/quick-start.html/

First line: type of error

Stack trace tells you

where the leaked

memory was allocated
(in function ‘f’ on line 5

of file a.c)

Your program is definitely

leaking memory!

(May also see “probably,”

“possibly,” or “indirectly.”)

Pointers: Quick Review

(Not meant to teach you the
concept from scratch!)

Pointers

Used to “point” to locations in memory
int x;

int *xPtr;

x = 5;

xPtr = &x; /* xPtr points to x */

xPtr = 6; / x’s value is 6 now */

Pointer type must match the type of the
variable whose location in memory it points
to

Pointers – Ampersand

Ampersand (‘&’) returns the address of a
variable

Asterisk (‘*’) dereferences a pointer to get to
its value (lso used when initially declaring a
pointer)
int x = 5, y = 7;

int *varPtr;

varPtr = &x;

*varPtr = 0;

varPtr = &y;

x = *varPtr;

Examples – Ampersand and
Asterisk

int x = 5;

int *xPtr; [* used to declare ptr]

xPtr = &x; [& used to get address]

xPtr = 10; [used to get value]

cout << &xPtr; [& used to get address]

Examples – Ampersand and
Asterisk

int x = 5;

int *xPtr; [* used to declare ptr]

xPtr = &x; [& used to get address]

xPtr = 10; [used to get value]

cout << &xPtr; [& used to get address]

Pointer Assignments

Pointers can be assigned to one another using =

int x = 5;

int *xPtr1 = &x; /* xPtr1 points

to address of x */

int *xPtr2; /* uninitialized */

xPtr2 = xPtr1; /* xPtr2 also points

to address of x */

(*xPtr2)++; /* x is 6 now */

(*xPtr1)--; /* x is 5 again */

NULL Pointers

NULL is a special value that does not point to any
address in memory

It is a “non” address

Uninitialized pointers are like any new memory –
they can contain anything

Setting a pointer to NULL will prevent accidentally
accessing a garbage address (but dereferencing
a null pointer will still give a segfault—that’s a
Good Thing!)

Pointer Visualization Exercise

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

Pointer Visualization Exercise

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

Pointer Visualization Exercise

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?

Pointer Visualization Exercise

int x = 5;

int *xPtr = &x; /* xPtr points to x */

int y = *xPtr; /* y’s value is ? */

variable name x xPtr y

memory address 0x7f96c 0x7f960 0x7f95c

value 5 0x7f96c ?5

Pointers and Arrays

Arrays are built by pointers

Array name equivalent to address of first
element
char terry[6] = “hello”;

Dynamic Memory and Classes

33

Dynamically Allocating Instances

Stack:
Date today;

Heap:

Date *todayPtr = new Date(2016,2,7);

In both cases, constructor called (different
versions, though)

Dynamically Allocating Instances

Stack:
Date today;

nothing – handled for you

Heap:

Date *todayPtr = new Date(2016,2,7);

call delete and set pointer to NULL

delete todayPtr;

todayPtr = NULL;

What to do when

freeing memory?

Accessing Member Variables

Objects/structs (non-dynamic)

Use the “dot” notation

today.m_day = 2;

Heap (dynamic), or any other pointers

Use the “arrow” notation

todayPtr->m_year = 2015;

Shorthand for “dereference and use ‘dot’”

(*todayPtr).m_year = 2015;

Passing Class Instances

Stack

Normal variable; works as expected

cout << x;

Heap

Need to dereference variable first

cout << xPtr; // prints address

cout << *xPtr; // prints value

Destructor

All classes have a built-in destructors

Created for you by C++ automatically

Called when instance of class ceases to exist
Explicit delete, or end of program (return 0)

Classes can have member variables that
are dynamically allocated

Built-in destructors do not free dynamic memory!

Must code one for the class yourself

Coding Destructors

Named after class, and has no parameters

In source (.cpp file)

Student::~Student() {

// free array of class name strings

delete classList; }

In header (.h file)

~Student(); // denotes destructor

Calling Destructors

Stack
Student GV37486;

Automatically called at end of scope (function);

Heap

Student *FY18223 = new Student();

Called only when memory is freed

delete FY18223; // destructor called

FY18223 = NULL;

